∞∑n=−∞(−1)nqn(3n−1)/2=∞∑n=−∞(−1)nqn(3n+1)/2=(q;q)∞∑n=−∞∞(−1)nqn(3n−1)/2=∑n=−∞∞(−1)nqn(3n+1)/2=(q;q)∞첫번째 식에 nn 대신 −n−n을 넣었을 때 두번째 식이 되고, 결과적으로 의미가 있는 것은 세번째 식이라고 할 수 있겠다.Ramanujan's notation 중 하나를 생각한다. 이 글에서 음의 무한부터 양의 무한까지의 급수는 간단하게 ∑∑으로 나타낸다.left hand side ::f(−q)=f(−q;−q2)=∑(−q)n(n+1)/2(−q2)n(n−1)/2=∑(−1)nqn(3n−1)/2f(−q)=f(−q;−q2)=∑(−q)n(n+1)/2(−q2)n(n−1)/2=∑(−1)nqn(3n−1)/2 right hand si..
\(|q|
Series of Uncertainty
동기(motivation) 중심의 수학 이야기
* 단축키는 한글/영문 대소문자로 이용 가능하며, 티스토리 기본 도메인에서만 동작합니다.