Mean Value Theorem극한을 직접 계산하지 않고도 구간 안에 어떤 미분값이 존재함을 알려주는 멋진 정리이다. f가 [a,b]에서 연속이고 (a,b)에서 미분 가능할 때 이 정리에서 f(a)=f(b)일 때가 롤의 정리이고, 반대로 롤의 정리에서 이 정리가 쉽게 유도된다.를 생각해보면 g(a)=g(b), g는 [a,b]에서 연속, (a,b)에서 미분 가능하므로 롤의 정리를 적용하여\[ \exists c \in (a,b) \quad \mathrm{such \ ..
Rolle's Theorem어떤 구간 [a,b]에서 f(a)=f(b)이고 함수 f는 [a,b]에서 연속, (a,b)에서 미분 가능할 때 f'(c)=0인 c가 (a,b)에 존재한다. f가 상수함수가 아닌 이상 최대와 최소가 존재할 것이고 그 근처에서 페르마의 정리를 사용하면 증명이 가능해보인다.만약라면 (a,b)의 아무 점 c를 잡아서임을 쉽게 보일 수 있다. 좀 더 엄밀하게 적을 때는 델타를 c+h가 (a,b)를 벗어나지 못하게 잡으면 된다. 이제\[x \in [a,b], \quad f(x) \not = f(a..