어떤 수학 분야를 나의 것으로 만드는 방법
주절주절
2016. 11. 12. 00:04
Terence Tao가 자신의 블로그에 개재한 글의 일부이다.
Can you find alternate proofs?
Can you find alternate proofs?
제 2의 증명을 찾을 수 있는가?
If you know two proofs of the lemma, do you know to what extent the proofs are equivalent? Do they generalise in different ways? What themes do the proofs have in common? What are the other relative strengths and weaknesses of the two proofs?
If you know two proofs of the lemma, do you know to what extent the proofs are equivalent? Do they generalise in different ways? What themes do the proofs have in common? What are the other relative strengths and weaknesses of the two proofs?
정리의 두 가지 증명을 안다면, 어느 정도로 증명이 동일한가? 다른 방법으로 일반화되는가? 두 증명이 공통으로 가지는 테마는 무엇인가? 두 증명의 다른 상대적 강함과 약함은 어떤가?
Do you know why each of the hypotheses are necessary?
Do you know why each of the hypotheses are necessary?
각각의 가설들이 왜 필요한지 아는가?
What kind of generalizations are known/conjectured/heuristic?
What kind of generalizations are known/conjectured/heuristic?
어떤 종류의 일반화가 알거나/추측되거나/발견되는가?
Are there weaker and simpler versions which can suffice for some applications?
Are there weaker and simpler versions which can suffice for some applications?
기능을 만족하는 더 약하거나 간단한 버전이 있는가?
What are some model examples demonstrating that lemma in action?
What are some model examples demonstrating that lemma in action?
정리를 입증하는 좋은 예가 있는가?
When is it a good idea to use the lemma, and when isn’t it?
When is it a good idea to use the lemma, and when isn’t it?
정리를 쓸 좋은 상황은 언제이며, 그렇지 않을 때는 언제인가?
What kind of problems can it solve, and what kind of problems are beyond its ability to assist with?
What kind of problems can it solve, and what kind of problems are beyond its ability to assist with?
그것은 어떤 종류의 문제를 해결하거나 도움을 줄 수 있는가? 어떤 종류의 문제가 그것이 도울 수 있는 범위의 밖인가?
Are there analogues of that lemma in other areas of mathematics?
수학의 다른 분야에 그것과 유사한 정리가 있는가?
Does the lemma fit into a wider paradigm or program?
Does the lemma fit into a wider paradigm or program?
그 정리는 더 넓은 장에 들어맞는가?