q-series and Finite Continued Fraction
For n∈N,
μ:=μn(a,q):=[(n+1)/2]∑k=0(q)n−k+1akqk2(q)k(q)n−2k+1ν:=νn(a,q):=[n/2]∑k=0(q)n−kakqk(k+1)(q)k(q)n−2k
Then
\newcommand{\surplus}{\mathbin{\genfrac{}{}{0pt}{}{}{+}}} \frac \mu \nu = 1+ \frac {aq} 1 \surplus \frac {aq^2} 1 \surplus \cdots \surplus \frac {aq^n } 1 .
To prove this, we define a new function to handle \mu and \nu.
F_r := F_r (a,q ) := \sum _{k=0} ^{ [(n-r+1)/2] } \frac { (q)_{n-r-k+1} a^k q^{k (r+k)} } {(q)_k (q)_{n-r-2k+1} }
Then F_0 = \mu, \quad F_1 = \nu. Also we can observe
F_n = 1, \quad F_{n-1} = \sum _{k=0} ^1 \frac { (q)_{2-k} a^k q^{n+k-1} }{ (q)_k (q)_{2-2k} } = 1 + aq^n
If we find the recurrence relation of F_r, we can expand known value F_n , F_{n-1} to F_1 ,F_0. Using the fact that \frac {1}{(q)_{-1}} = 0,
\begin{align*} F_r - F_{r-1} &= \sum _{k=0} ^{ [(n-r+1)/2] } \frac { (q)_{n-r-k+1} a^k q^{k (r+k)} } {(q)_k (q)_{n-r-2k+1} } - \sum_{k=0} ^{[(n-r=2)/2]} \frac { (q)_{n-r-k} a^k q^{k (r+k+1}} {(q)_k (q)_{n-r-2k} } \\ &= \sum _{k=1} ^{[(n-r+1)/2]} \frac { (q)_{n-r-k} a^k q^{k(r+k)} }{(q)_k (q)_{n-r-2k} } \Bigg( \frac {1- q^{n-r-k+1} }{1-q^{n-r-2k+1} } -q^k \Bigg) \\ &= \sum _{k=1} ^{[(n-r+1)/2]} \frac { (q)_{n-r-k} a^k q^{k(r+k)} }{(q)_k (q)_{n-r-2k} } \frac {1-q^k} {1-q^{n-r-2k+1}} \\ &= \sum _{k=1} ^{[(n-r+1)/2]} \frac { (q)_{n-r-k} a^k q^{k(r+k)} }{(q)_{k-1} (q)_{n-r-2k+1} } \\&= aq^{r+1} F_{r+2} \end{align*}
Using this result, we can easily get
\newcommand{\surplus}{\mathbin{\genfrac{}{}{0pt}{}{}{+}}} \frac \mu \nu = 1+ \frac {aq} 1 \surplus \frac {aq^2} 1 \surplus \cdots \surplus \frac {aq^n } 1 .